SIMATIC RTLS4000 网关中使用的混合技术能够在一台设备中提供两种无线标准。因此,UWB — 对于高精度和 PHASE 很重要,并且对于基本无线技术适用的长距离很重要 — 可整合到一台设备中。根据应用,可以使用一种或另一种技术。此外,如果需要扩展应用程序,还可以使用现有的基础架构,而不必安装新设备。一项技术可以实现无数可能性。
通过变电站防雷接地设置,在雷雨季节等情况下,对于变压器等高压设备的保护有着重要的意义,在变电站安装调试过程中,由于多方面因素,在防雷接地方面经常出现下列几个问题,分别是:避雷网设置不足;避雷带材料不合格、焊接不牢固;接地体埋深不符合标准等等。
解决措施:变电站防雷接地的重要性勿容质疑,防雷接地的问题如果不能很好的解决将会对变电站运行安全造成影响,针对具体的一些问题,可以通过相应的措施来保证施工质量。如:选用质量优良的接地金属材料,同时对于焊接的质量提高要求;避雷带的设计设置。
要齐全合理;接地极的埋深必须合格,严格按照要求进行。
10kV不接地系统的电压互感器经常出现高压熔断器熔断、甚至互感器烧毁等异常故障,这不仅影响了电能表的准确计量,而且还容易造成保护装置和安全自动装置的误动作,严重危及配电网的安全可靠运行。 为什么出现接地故障时容易造成PT损坏故障呢?因为个人时间原因,给大家简单讲一个深入浅出的渐进式分析过程吧。 一、首先,了解一下电压互感器的用途 把高电压按比例关系变换成100V或更低等级的标准二次电压,监视母线电压及电力设备运行状况,并供保护、计量、仪表装置使用。 标准电压使仪表和继电器规格统一,易于实现标准化。 电压互感器可以将高电压与电气工作人员隔离,且二次侧可设接地点,确保人员及二次设备的安全。 可以说,电压互感器就是一个有着特殊结构和使用形式的小型变压器。 二、然后,了解一下电网谐振的定义 电力系统的任一回路都可简化成电阻R、感抗wL、容抗1/wC的串并联回路。不管是串联还是并联回路,当容抗1/wC和感抗wL相等时,这个回路就会发生谐振。 三、谐振如何影响电压互感器正常工作 10kV中性点不接地电网中的电磁式电压互感器一次绕组是电网对地唯一的金属性通道。单相接地或消失时,电网对地电容通过PT一次绕组有一个充放电的过渡过程。试验测得此时常常有*高幅值达数安培的工频半波涌流通过PT,此电流足够将PT高压熔丝熔断。 在这一瞬变过程中,互感器高压绕组中将会流过一个幅值很高的低频饱和电流,使铁芯严重饱和,饱和后的电压互感器励磁电感变小,系统网络对地阻抗趋于感性,此时若系统网络的对地电感与对地电容相匹配,就形成三相或单相共振回路,可激发各种铁磁谐振过电压,造成高压互感器烧毁。 由此可见,如果遇到断断续续的接地故障(一般表现为单相接地),是非常容易烧毁电压互感器,或熔断高压熔丝的。 上文中提到铁磁谐振这个词,所以还有必要讲一下铁磁谐振的产生过程。 四、铁磁谐振的产生过程及危害 电力系统产生谐振的回路中,电感元件和电容元件就会产生过电压和过电流,此时的电场能量(电容)与磁场能量交换达到*大值。在高压回路中,由于线路等电气设备对地存在分布电容,再加上电压互感器之类的非线性铁磁元件电感的存在,具备了构成谐振的必要条件,一旦系统电压发生扰动,就有可能会激发谐振,由于铁磁元件的非线性(如铁芯饱和时感抗会变小),这一谐振会进一步增大,当出现wL=1/wC时,这种谐振称为铁磁谐振。 铁磁谐振对地产生很高的过电压,此电压可能是额定电压的几倍至几十倍,致使瓷绝缘放电,绝缘子、套管等的铁件出现电晕,电压互感器一次熔断器熔断,严重时将损坏设备。 五、铁磁谐振的产生原因 在实际运行中产生铁磁谐振的具体原因,可能有以下几方面: 中性点不接地系统发生单相接地、单相断线或跳闸,三相负荷严重不对称等。其中,单相接地故障是铁磁谐振*常见的一种激发方式。 与电压互感器铁芯的饱和程度有关。在中性点不接地系统中使用中性点接地的电压互感器时,若其铁芯过早饱和则更容易产生铁磁谐振。 倒闸操作过程中由于运行方式恰好构成谐振条件,如三相断路器不同期分合时,都会引起电压、电流波动,引起铁磁谐振。 终上所述,电压互感器比较严重的故障都跟铁磁谐振有关系,如何消除或减少铁磁谐振是确保电网正常运行和保护电压互感器的重要措施。如何消除铁磁谐振要先认识一下发生谐振的震荡频率。 六、谐振的振荡频率分析 Xc0是系统每相容抗;Xm为电压互感器的单相绕组在额定线电压作用下的对地励磁电抗。 当比值Xc0/Xm较小(在0.01~0.07)时发生的谐振是分频谐振。电容和电感在振荡时能量交换所需的时间较长,振荡频率较低。 当比值Xc0/Xm较大(在0.55~2.8)时发生的谐振是高频谐振。发生高频谐振时线路的对地电容较小.振荡时能量交换较快。 当比值Xc0/Xm接近于1时,发生谐振的谐振频率与电网频率相同,故称之为基频谐振。 可以认为:当Xc0/Xm≤0.01或Xc0/Xm≥2.8时,系统不会发生铁磁谐振。知道这一点,基本可以知道防止铁磁谐振的方法和措施了。 七、防止铁磁谐振产生的措施 改变XC/XL的比值,如使用电容式电压互感器(CVT)或在母线上接入一定大小的电容器,使XC/XL<0.01来避免谐振。 电压互感器开口三角绕组两端连接一个适当数值的阻尼电阻R(约为几十欧)。 对该供电区域10kV、35kV系统电容电流进行实测,对电容电流超过标准规定的变电站安装消弧线圈和消谐装置。 经过以上改良,也就基本可以消除10kV不接地系统接地故障造成电压互感器烧毁的故障。但万事也不是**的,还需要日常保养和对系统的了解、维护,比如:对10kV架空裸导线定期进行隐患排查,使其远离树木、建筑物等。在有可能发生接地故障的线路加装绝缘护套,市区或丛林密集地区用架空绝缘导线代替裸导线。 从特性上应该了解铁磁谐振产生的根本原因是铁心饱和,即电压互感器的励磁特性不好;电压互感器的非线性铁磁特性又是产生铁磁谐振的根本原因,铁磁元件的饱和效应本身,也限制了过电压的幅值;回路损耗也使谐振过电压受到阻尼和限制。所以,在运行维护中,应该**励磁特性好的电压互感器替换原来的互感器。Q |
漏电保护器按不同方式分类来满足使用的选型。如按动作方式可分为电压动作型和电流动作型;按动作机构可分为开关式和继电器式;按极数和线数可分为单极二线、二极和二极三线等;按动作灵敏度可分为高灵敏度(漏电动作电流在30mA以下)、中灵敏度(漏电动作电流在30~1000Ma)和低灵敏度(漏电动作电流在1000mA以上);按动作时间可分为快速型(漏电动作时间小于0.1s)、延时型(动作时间为0.1~2s之间)、反时限型(随漏电电流的增加,漏电动作时间减小。当额定漏电动作电流时,动作时间为0.2~1s;1.4倍动作电流时为0.1~0.5s;4.4倍动作电流时为小于0.05s。) 选择漏电保护器应按照使用目的和根据作业条件选用:按保护目的选用:①以防止人身触电为目的。安装在线路末端,选用高灵敏度,快速型漏电保护器。②以防止触电为目的与设备接地并用的分支线路,选用中灵敏度、快速型漏电保护器。③用以防止由漏电引起的火灾和保护线路、设备为目的的干线,应选用中灵敏度、延时型漏电保护器。 |