电气线路发生火灾,主要是线路的短路、超负荷运行、导线接触电阻过大、产生电火花和电弧或引起导线过热等原因造成。 一、短路 由于各种原因发生相线与相线或零线在某一点相碰,引起电流突然大量增加的现象。短路分相间短路和对地短路两种:即相线与相线相碰称为相间短路;相线与零线、接地导体、大地直接相碰,称为对地短路。 电气线路发生短路时,短路电流突然增大,在极短的时间内的发热量也很大,不仅能使绝缘燃烧,而且能使金属熔化,引起附近的易燃、可燃物质燃烧,造成火灾。电气线路发生短路的主要原因有: 使用绝缘导线、电缆时,没有按具体环境选用,使导线的绝缘受高温、潮湿或腐蚀等作用的影响而失去绝缘能力;线路年久失修、绝缘层陈旧老化或受损,使线芯裸露;电源过电压,使导线绝缘被击穿;用金属线捆扎绝缘导线或把绝缘导线挂在钉子上,日久磨损和生锈腐蚀,使绝缘受到破坏;裸导线安装太低,搬运金属物件时不慎碰在电线上,金属物件搭落或小动物跨接在电裸导线上;架空线路电线间距太小,档距过大,电线松驰,有可能发生两线相碰;架空电线与建筑物、树木距离太小,使电线与建筑物或树木相碰;电线机械强度不够,使电线断落接触大地,或断落在另一根电线上;安装、修理人员接错线路,或带电作业时造成人为碰线短路;不按规程要求私接乱拉,管理不善,维护不当造成短路。 二、过负荷 电气线路中允许连续通过而不致于使电线过热的电流量,称为电线的安全载流量或安全电流。如电流中流过的电流量超过了安全电流量,就叫电线过负荷。 一般电线的*高允许工作温度为65度。当线路过负荷时,电线的温度超过这个温度值,会使电线的绝缘层加速老化,甚至变质损坏引起短路着火事故。 造成电气线路发生过负荷的主要原因有: 设计或选择导线截面不当,实际负载超过了导线的安全载流量;在线路中接入过多或功率过大的电气设备,超过了电气线路的负载能力。 三、接触电阻过大 导体连接时,在接触面上形成的电阻称为接触电阻。接头处理良好,则接触电阻小;若接头接触不良或其他原因,则产生接点电阻过大,称为接触电阻过大。接触电阻过大时,会产生极大的热量,可以使金属变色甚至熔化,并能引起绝缘材料、可燃物质及积落的可燃灰尘燃烧。 电气线路发生接触电阻过大的主要原因有: 安装质量差,造成导线与导线、导线与电气设备衔接点连接不牢;连接点由于热作用或长期震动使接头松动;在导线连接处有杂质,如氧化层、泥土等;铜铝混接时,由于铜铝处理不当,在电腐蚀作用下电阻会很快增大。 四、电气线路产生的电火花和电弧 电火花是电极间放电的结果。电弧是由大量密集电火花所构成的。电弧温度可达3000度以上,电火花和电弧容易引起可燃物质燃烧或爆炸性可燃气体、可燃粉尘的爆炸。电气线路产生电火花和电弧的原因主要有: 导线绝缘损坏或导线断裂,形成短路或接地时,在短路点或接地处将有强烈电弧产生;大负荷导线连接处松动,在松动处会产生电火花和电弧;架空的裸导线,混线相碰或在风雨中短路时,各种开关在接通或切断电路时、熔断器的熔丝在熔断时,以及在带电情况下检修或操作电气设备时,都将会有电弧或电火花产生。五、漏电 导线绝缘或支架材料的绝缘能力不佳,以致导线与导线、导线与大地间,有微量的电流通过,称为漏电。所谓走电、跑电就是一种严重的漏电现象。漏电的主要原因与危害: 漏电会使局部物体带电而造成人身触电,严重时,漏电火花和产生的高温能成为火灾的着火源。发生漏电的主要原因有: 绝缘导线因使用时间较长,陈旧老化,绝缘强度减弱而漏电;导线受潮、高温、腐蚀而降低绝缘强度被击穿漏电;在安装或检修过程中,不慎损伤导线绝缘层;或用电设备的对地绝缘损坏等。 |
一、三相电压或电流不平衡等因素产生的主要危害: 1、旋转电机在不对称状态下运行,会使转子产生附加损耗及发热,从而引起电机整体或局部升温,此外反向磁场产生附加力矩会使电机出现振动。对发电机而言,在定子中还会形成一系列高次谐波。 2、引起以负序分量为启动元件的多种保护发生误动作,直接威胁电网运行。 3、不平衡电压使硅整流设备出现非特征性谐波。 4、对发电机、变压器而言,当三相负荷不平衡时,如控制*大相电流为额定值,则其余两相就不能满载,因而设备利用率下降,反之如要维持额定容量,将会造成负荷较大的一相过负荷,而且还会出现磁路不平衡致使波形畸变,设备附加损耗增加等。 二、由不对称负荷引起的电网三相电压不平衡可以采取的解决办法: 1、将不对称负荷分散接在不同的供电点,以减少集中连接造成不平衡度严重超标的问题。 2、使用交叉换相等办法使不对称负荷合理分配到各相,尽量使其平衡化。 3、加大负荷接入点的短路容量,如改变网络或提高供电电压级别提高系统承受不平衡负荷的能力。 解决三相负荷不平衡的几点措施: 一、重视低压配电网的规划工作,加强与地方政府规划等部门的工作沟通,避免配电网建设无序,尤其避免在低压配电网中出现头痛医头,脚痛医脚的局面,在配电网建设和改造当中对低压台区进行合理的分区分片供电,配变布点尽量接近负荷中心,避免扇型供电和迂回供电,配电网络的建设要遵循“小容量、多布点、短半径”的配变选址原则。 二、在对采用低压三相四线制供电的地区,要积极争取对有条件的配电台区采用3芯或者4芯电缆或者用低压集束导线供电至用户端,这样可以在低压线路施工中*大程度的避免三相负荷出现偏相的出现,同时要做好低压装表工作,单相电表在A、B、C三相的分布尽量均匀,避免出现单相电只挂接在一相或者两相上,在线路末端造成负荷偏相。 三、在低压配电网零线采用多点接地,降低零线电能损耗。目前由于三相负荷的分布不平衡,导致了零线出现电流,按照规程要求零线电流不得超过相线电流的25%,在实际运行当中,由于零线导线截面较细,电阻值较相同长度的相线大,零线电流过大在导线上也会造成一定比例的电能损耗,所以建议在低压配电网公用主零线采用多点接地,降低零线电能损耗,避免因为负荷不平衡出现的零线电流产生的电压严重危及人身安全,而且通过多点接地,减低了因为发热等原因造成的零线断股断线,使得用户使用的相电压升高,损坏家用电器。此外对于零线损耗问题,在目前一般低压电缆中,零线的截面为相线的1/2,电阻值大造成了在三相负荷不平衡时,零线损耗加大,为此可以考虑到适当增大零线的导线截面,例如采用五芯电缆,每相用一个芯线而零线则用两个芯线。 四、对单相负荷占较大比重的供电地区积极推广单相变供电。目前在城市居民小区内大部分的负载电器是采用单相电,由于线路负荷大多为动力、照明混载,而电气设备使用的同时率较低,这样使得低压三相负荷在实际运行中的不平衡的幅度更大。另外从目前农村的生活用电情况看,在很多欠发达和不发达地区的农村存在着人均用电量小,居住分散,供电线路长等问题,对这些地区可以考虑到对于用户较分散、用电负荷主要以照明为主、负荷不大的情况,采用采用单相变压器供电的方式,以达减少损耗和建设资金的目的。目前单相变压器损耗比同容量三相变压器减少15%~20%,有的厂家生产的单相变在低压侧可以引出380V和220V两种电压等级,同时在一些地区也已开展利用多台单相变向三相负荷供电的试点,为使用单相变供电提供了更加广阔的空间。 五、积极开展变压器负荷实际测量和调整工作。配变的负荷实测工作看似简单,但是在实际工作中有几点需要注意,一是实测工作不能简单地测量配变低压侧A、B、C三相引出线的相电流,而且要测量零线上的电流,或者是测量零线(排)对地电压,从而可以更好地比较出三相负荷的不平衡情况,二是实测工作要向低压配电线路的末端和分支端延伸,这样可以进一步发现不平衡负荷的出现地点,确定调荷点,三是负荷实测工作既要定期开展也要不定期开展,尤其是在大的用户负荷投运和在高峰负荷期间,要增加实测的次数,通过及时的测量配变低压出线和接近用户端的低压线路电流,便于准确地了解设备的运行情况,做好负荷的均衡合理分配。 |
引起三相电压不平衡的原因有多种,如:单相接地、断线谐振等,运行管理人员只有将其正确区分开来,才能快速处理。 一、 断线故障 如果一相断线但未接地,或断路器、隔离开关一相未接通,电压互感器保险丝熔断均造成三相参数不对称。上一电压等级线路一相断线时,下一电压等级的电压表现为三个相电压都降低,其中一相较低,另两相较高但二者电压值接近。本级线路断线时,断线相电压为零,未断线相电压仍为相电压。 二、接地故障 当线路一相断线并单相接地时,虽引起三相电压不平衡,但接地后电压值不改变。单相接地分为金属性接地和非金属性接地两种。金属性接地,故障相电压为零或接近零,非故障相电压升高1.732倍,且持久不变;非金属性接地,接地相电压不为零而是降低为某一数值,其他两相升高不到1.732倍。 谐振原因 随着工业的飞速发展,非线性电力负荷大量增加,某些负荷不仅产生谐波,还引起供电电压波动与闪变,甚至引起三相电压不平衡。 谐振引起三相电压不平衡有两种: 一种是基频谐振,特征类似于单相接地,即一相电压降低,另两相电压升高,查找故障原因时不易找到故障点,此时可检查特殊用户,若不是接地原因,可能就是谐振引起的。 另一种是分频谐振或高频谐振,特征是三相电压同时升高。 另外,还要注意,空投母线切除部分线路或单相接地故障消失时,如出现接地信号,且一相、两相或三相电压超过线电压,电压表指针打到头,并同时缓慢移动,或三相电压轮流升高超过线电压,遇到这种情况,一般均属谐振引起。 |