全国服务热线: 15821971992

西门子plc-数控系统总代理商-2023

发布日期 :2023-07-19 17:06发布IP:114.95.101.251编号:12024046
品牌:
西门子
型号:
模块
产地:
德国
分 类
负荷开关
单 价
电议
有效期至
长期有效
咨询电话
15821971992
手机
15821971992
Email
2724917714@qq.com
让卖家联系我
详细介绍
首先,我们要知道接地的目的是什么!看下图:


仔细观察,我们会发现右图的电池负极线路有接地标识。这说明,电池负极为零电位,它为全电路定义了电压参考点。这种接地叫做工作接地,工作接地的目的就是为系统构建零电位点。


这张图中,T是电力变压器的低压侧绕组。低压绕组的中性线实施了工作接地,注意是接大地。我们把工作接地后的中性线引出,它就是大名鼎鼎的零线,符号是PEN,定义名称是保护中性线。注意:图中的配电系统,有了工作接地,线路中各处的对地电位就是明确的,不会发生偏移。


图中的负载电阻Ra、Rb和Rc不相等,如果零线没有工作接地,它的末端电位就会偏离零电位点。有了工作接地,零线的电位被强制性地限定为大地的零电位。这就是工作接地的目的。


这张图中,我们看到了变压器低压侧绕组的中性线N执行了工作接地,并且以PEN零线的形式引出。注意到在负载侧的引入端,零线再次重复接地,其目的是确保零线线路末端的电位依然为零。这样做的就能够防止零线过长引起零线末端的零电位偏离,防止因为零线断裂而引起的零电位偏离。
注意到一个重要事实:尽管零线电位为零,但零线电流丝毫不受影响。也就是:零线电流的大小与零线电位为零无关!为何如此?因为零线的电压是节点电压,不是欧姆定律定义的电压。零线电压遵循基尔霍夫第二定律KVL,不遵循欧姆定律。
这张图就是TN-C接地系统。图中左起个负载,我们看到零线首先引入到用电设备的金属外壳,然后再引入到零线接线端子,于是用电设备外壳的电位为零。这种接法叫做保护接零。
保护接零的目的是什么?
其一:若用电设备的内部发生火线碰壳事故,由于外壳接零,于是外壳的电位为零。此时,若有人正在触摸用电设备的外壳,由于外壳为零电位,以此保障了人身安全。
其二:注意到零线电流与零线电压无关。当上述碰壳事故发生后,接零电流相当于火线对零线短路,于是线路中的保护装置(断路器或者熔断器)就会执行线路保护切断故障线路。


这张图中,我们看到变压器低压侧绕组工作接地后,以中性线N的形式引出。也就是说,TT接地系统具有工作接地。
用电设备的外壳单独接地,与N线无关。这种接地叫做保护接地。
用电设备的外壳执行保护接地后,一旦发生碰壳事故,由于用电设备的外壳为零电位,确保了人身安全防护。同时,故障电流形成接地电流,经过地网再返回变压器中性点。由于地网的阻抗较大,因此故障电流较小,无法启动断路器或者熔断器执行线路保护。这时,就需要在系统中安装漏电保护器来执行线路保护。
一般地,漏电保护器的动作电流设定为30mA。
IEC提出了另外一种接地形式,以满足配电系统的接地需求,这就是TN-S接地系统。
注意看图中的变压器中性点,它工作接地后以中性线N和保护线PE的形式引出。在负载侧,负载的外壳接到PE线上。由于PE线就是地线,所以用电设备的这种防护也叫做保护接地。
TN-S的保护接地与TT的保护接地有何不同?当TN-S接地系统中用电设备的外壳发生碰壳事故,故障电流沿着PE地线返回电源,线路阻抗很小。又因为地线PE与中性线N在电源侧是接在一起的,接地电流相当于相线对N线的短路,故障电流较大,能够启动线路中的保护装置执行线路保护。同时,TN-S接地系统是可以安装漏电保护器的。(https://www.diangon.com/版权所有)TN-S接地系统中的人身安全防护相对其它接地系统要完善得多。
值得注意的是:IEC规定X相X线的线制中,“X线”指的是正常运行时有电流流过的线路。PE线在正常运行时没有电流流过,因此它不算线。故而,TN-S接地系统属于三相四线制。
IEC还把TN-C系统与TN-S接地系统联合起来,形成TN-C-S接地系统。


注意看图中的负载,靠左侧的用电设备属于保护接零,系统中存在零线PEN;靠右侧的用电设备属于保护接地(保护接PE地线),局部系统中没有零线,只有中性线N和地线PE。
一般地,在零线分开为中性线N和地线PE时,分开点需要配套重复接地。
下面看一张居家配电系统的TN-C-S接地系统图。


在图中,我们看到了电力变压器T,它的中性线接地,然后以PEN零线的形式引出。同时,三条相线引入到总断路器中。在总断路器下端的出线侧,三条相线(火线)和PEN线(零线)一起,经过电缆引入到居家配电的入口处。此处的接地系统符合TN-C接地系统。
在居家配电的入口处,零线PEN首先接到重复接地的扁钢LEB处,在这里一分为二,成为PE地线和N中性线。从这里开始,接地系统变成TN-S。由于它是经由TN-C改变接线而得到的,因此IEC把它叫做TN-C-S接地系统。


注意到图中的相线经过总开关QF0后,和中性线一起引入到电度表中。在电度表的出口处,系统中的相线L、中性线N和PE地线一起入户,到达我们居家的配电箱中。
居家配电箱中,安装了总进线开关,总漏电开关,还有若干馈电开关。图中的电冰箱就接在右侧的馈电回路末端。我们看到,电冰箱的外壳是接PE地线的。
当电冰箱的外壳发生碰壳事故后,地线PE将流过故障电流,而相线中的电流也会增加,于是总进线开关处的漏电保护器会执行保护动作,驱动总开关跳闸;同时,电冰箱回路的馈电开关也会跳闸。由于我们设计总漏电开关的动作时间略微滞后于馈电开关,因此电冰箱回路所在的馈电开关会先跳闸,由此实现了上下级开关动作的选择性。

AFDiSD 诊断限于短路、失去冗余、颤动检测和现场设备故障。另外,借助于可通过模式选择开关激活的扩展现场总线诊断功能,可对整个 PROFIBUS PA 网段执行全面诊断。

这种诊断包括检测、记录和监视以下方面:

拓扑(DP/PA 耦合器、AFDiSD)

主线路和分支线路上的电压和电流

信号电平和噪声电平

与主线路的屏蔽端的电容不平衡

因此,可以迅速检测并消除组态错误或缺陷。

不过,应用增强现场总线诊断的先决条件是,总线段上的所有有源现场分配器以及 PA 链接器的组件都支持此功能。以下组件满足这一要求:

有源现场分配器 AFDiSD,订货号 6ES7655-5DX60-1BB0

IM 153-2 高性能户外型接口模块,订货号 6ES7153-2BA70-0XB0

DP/PA 耦合器 FDC 157,订货号 6ES7157-0AC85-0XA0

该接口模块可创建所连接的总线段的拓扑模型并映射其状态信息。为此,DP/PA 耦合器和本地安装的有源现场分配器 AFDiSD 为接口模块提供该总线段的物理数据以及有关所连接的线路状态的信息。由接口模块提供的信息可显示在 PCS 7 维护站上,并由 SIMATIC PDM 进行分析。

出厂时,AFDiSD 中并未激活增强现场总线诊断功能。在这种状态下,AFDiSD 的功能等同于 AFDiS 的功能。

有源现场分离器 (AFS)

有源现场分路器 (AFS) 可将 PA 总线网段与 PA 路由器 PA link 中的冗余耦合器对相连。AFS 可将总线网段与相应的有源耦合器进行互连。

PA 总线网段可通过一个或两个(中心馈电)相同的 Y 型连接器(总共 4 个)连接到 AFS。对于中心馈电的情况,总线段通过两个 Y 型连接器来连接(两个 FDC 157 耦合器上的总线端接开关都设置为“OFF”)。

为了达到 IP66 防护等级的要求,必须使用密封接头对未使用接口进行保护。

AFS:PROFIBUS PA 的有源现场分配器



相关分类
推荐产品
信息搜索
 
智能科技新闻
浔之漫智控技术(上海)有限公司
  • 地址:上海市松江区石湖荡镇塔汇路755弄29号1幢一层A区213室
  • 电话:15821971992
  • 邮件:2724917714@qq.com
  • 手机:15821971992
  • 联系人:聂聪
数控系统新闻
数控系统相关搜索