起初我考虑的是西门子PLC的位存储区m是不是分断电保持和不保持两种?它是如何分类的?是不是像定时器一样,根据定时器编号,分成几段,同一段的定时器的分辨率是相同的,不同段的定时器的分辨率是不同的。如果是这样的话,那就得改功能开关“f1”所对应的位存储器m的编号了。
有位同学比较熟悉西门子PLC,于是发短信向这位同学请教:“程序里的m寄存器是不是分断电保持和不保持两种?怎么分类?”同学回复短信:“对,在系统块里面有断电保持设置范围mb就可以区分了。”于是我在编程软件里打开系统块里的断电数据保持子栏目,看到里面关于mb的设置围。
打开系统块的对话框,我心中又有疑问了,什么疑问呢?且看我给同学发的第二条短信:“m10.4属于mb吗?偏移量和单元数目是什么意思?我能把m10.4设置成断电保持吗?”不一会,同学发来短信答道:“属于mb,偏移量之前的不属于保持继电器,偏移量之后的属于保持继电器,单元数目表示从偏移量开始的保持继电器的个数。”这一下,我心里有底了,也特别高兴,对于我这个初学plc的毛孩子来说,能改动一下设备里的程序,使之满足操作的要求,是蛮有成就感的。
断电保持的位存储器mb,从m14开始,往后一直到m31,总共18个。而功能开关f1使用的是m10.4,只要将其偏移量由14改到10就可以了,但是不能随便改,万一m10到m13之间的其它寄存器不需要断电保持呢?于是检查了程序中的所有位存储器m,将其偏移量由14改到10,对其他位存储器m没有影响,因为这之间只用了m10.4,于是将其偏移量由14改为10。改完了以后,经试验还是不行,这才发现一条很重要的提示“系统块设置参数必须下载才能生效。”于是把修改好的程序重新往PLC里下载了一遍,这次对m10.4置位后,断电再送电,其状态是保持的。操作人员对我也竖起了大拇指,呵呵,其实是很简单的小问题。
从PLC的软件程序来考虑提高控制系统的可靠性
为了提高PLC控制系统工作的可靠性,可以专门设置一个定时器,作为监控程序部分,对系统的运行状态进行检测。若程序运行能正常结束,则该定时器就立即被清零;若程序运行发生故障,如出现死循环等,该定时器在设定的时间到就无法清零,此时PLC发出报警信号。在设计应用程序时,使用这种方法来实现对系统各部分运行状态的监控。如果用PLC来控制某一对象时,编制程序时可定义一个定时器来对这一对象的运行状态进行监视:该定时器的设定时间即为这一对象工作所需的大时间;当启动该对象运行时,同时也启动该定时器。若该对象的运行程序在规定的时间结束工作,发出一个工作完成信号,使该定时器清零,说明这一对象的运行程序正常;否则,属运行不正常,发出报警信号或停机信号。监控程序的梯形图如图7所示。图7中定时器T1为检测元件,X001为控制对象动作信号,X002为动作完成信号,M2为报警或停机信号。假设被控对象的运行程序完成一次循环需要50s,则定时器K值可取510(T1为100ms定时器)。当X001=1时,被控对象运行开始,T1开始计时;如在规定的时间内被控对象的运行程序能正常结束,则X002动作,M1复位,定时器T1被清零,等待下一次循环的开始;若在规定时间没有发出被控对象运行完成的动作信号,则判断为故障,T1的触点闭合,接通M2发出报警信号或停机信号。
冗余设计和降级操作设计
1) 对可靠性要求较高的应用场合,冗余设计和降级操作是必要的。冗余设计可采用热后备或冷后备方式。热后备方式操作时,冗余的后备系统也同时运行,两者输出的结果一致时,表示系统是正常运行的;一旦结果不一致,则发出警报信号,同时,根据自诊断的结果,切换到正常的系统去。冷后备方式操作时,冷后备系统不运行,它在自诊断检测出运行系统故障后才切入后备系统。对PLC来说,冗余系统的范围主要是CPU、存储单元、电源系统和通信系统,只有在可靠性要求很高时,才会包括输入输出单元的冗余等。
2) 降级操作是指在设计时,将手动操作包括在内的设计。例如,紧急停车的设计,关键设备的开停和再启动功能的设计等。这样,一旦发生故障,可采用降级的操作,即对部分或全部设备进行手动的开停操作,以避免设备的损坏或对人员的伤害。此外,在设计中也可考虑从全自动到半自动、直至手动的操作等。
1.5 PLC的I/O电路
1) 由于PLC是通过输入电路接受开关量、模拟量等输入信号,因此输入电路的元器件质量的好坏和连接方式直接影响着控制系统的可靠性。比如:按钮、行程开关等输入开关量的触点接触是否良好、接线是否牢固等。设备上的机械限位开关是比较容易产生故障的元件。在设计时,应尽量选用可靠性高的接近开关代替机械限位开关。此外,按钮的常开和常闭触点的选择也会影响到系统的可靠性。现以一个简单的起动、停止控制线路为例,如图2和图3所示的是两个控制线路和它们的对应梯形图。这两个控制线路的控制功能完全一样,按下起动按钮,输出动作;按下停止按钮,输出断开;但它们的可靠性不一样。我们假设输出断开为安全状态,那么图3的可靠性要比图2的高。这是因为SB1、SB2都有发生故障的可能,而常见的现象是输入电路开路。当采用图3电路时,不论SB1、SB2开关本身开路还是接线开路,输出都为安全状态,保证了系统的安全和可靠。
图2 起、停控制线路 图3 起、停控制线路
2) 在输入端有感性负荷时,为了防止反冲感应电势损坏模块,在负荷两端并接电容C和电阻R(交流输入信号),或并接续流二极管D(直流输入信号)。如图4所示:交流输入方式时,CR的选择要适当才能起到较好的效果。通过实验装置的测试,当负荷容量在10VA以下,一般选0.1μF+120Ω;负荷容量在10VA以上时,一般选0.47μF+47Ω较适宜。直流输入方式时,经试验得二极管的额定电流应选为1A,额定电压要大于电源电压的3倍。
(a) 交流输入方式 (b) 直流输入方式
图4 输入端有感性负荷时的方式
3) 在输出端有感性负载时,通过试验得出:若是交流负载场合,应在负载的两端并接CR浪涌吸收器;如交流是100V、200V电压而功率为400VA左右时,CR浪涌吸收器为0.47μF+47Ω,如图5所示。CR愈靠近负载,其抗干扰效果愈好;若是直流负载场合,则在负载的两端并接续流二极管D,如图6所示。二极管也要靠近负载。二极管的反向耐压应是负载电压的4倍。
图5 输出端交流感性负载 图6 输出端直流感性负载
注意充电的环境
充电佳的环境温度是25℃。现在多数充电器没有适应环境温度的自动控制系统,所以多数充电器都是按照环境温度25℃设计的,所以在25℃条件下充电比较好。否则,就难免出现冬季欠充电和夏季过充电的问题。而环境温度真正在25℃的时候比较少,这样就必然有夏季过充电冬季欠充电的问题。好在现在多数家庭都具有室内调温的条件,这样,充电的时候,好把电池和充电器安排在有通风并且调温的环境里。
特别提示的是电池处在北方冬季在室外低温状态进入温暖的室内的时候,电池的表面会出现结霜凝露。为了避免结霜凝露引起的电池漏电,应该在电池温度上升到与室内温度接近并且干燥以后再进行充电。