1.热电偶的概述
1.1 热电偶的工作原理
热电偶和热电阻一样,都是用来测量温度的。
热电偶是将两种不同金属或合金金属焊接起来,构成一个闭合回路,利用温差电势原理来测量温度的,当热电偶两种金属的两端有温度差,回路就会产生热电动势,温差越大,热电动势越大,利用测量热电动势这个原理来测量温度。
结构示意图如下:
图1 热电偶测量结构示意图
注意:如上图所示,热电偶是有正负极性的,所以需要确保这些导线连接到正确的极性,否则将会造成明显的测量误差
为了保证热电偶可靠、稳定地工作,安装要求如下:
① 组成热电偶的两个热电极的焊接必须牢固;
② 两个热电极彼此之间应很好地绝缘,以防短路;
③ 补偿导线与热电偶自由端的连接要方便可靠;
④ 保护套管应能保证热电极与有害介质充分隔离;
⑤ 热电偶对于外界的干扰比较敏感,因此安装还需要考虑屏蔽的问题。
1.2 热电偶与热电阻的区别
属性 | 热电阻 | 热电偶 |
信号的性质 | 电阻信号 | 电压信号 |
测量范围 | 低温检测 | 高温检测 |
材料 | 一种金属材料(温度敏感变化的金属材料) | 双金属材料在(两种不同的金属,由于温度的变化,在两个不同金属的两端产生电动势差) |
测量原理 | 电阻随温度变化的性质来测量 | 基于热电效应来测量温度 |
补偿方式 | 3线制和4线制接线 | 内部补偿和外部补偿 |
电缆接点要求 | 电阻直接接入可以更***的避免线路的的损耗 | 要通过补偿导线直接接入到模板;或补偿导线接到参比接点,然后用铜制导线接到模板 |
表1 热电偶与热电阻的比较
铅酸蓄电池已普遍应用于太阳能光伏电源系统。人们知道,铅酸蓄电池的使用寿命与是否过充电或过放电有很大关系,只要在太阳能光伏电源系统工作过程中保持蓄电池不过充电,也不过放电,就能延长使用寿命,让其正常工作5年以上。本文先容的简易太阳能电池充放电控制器,可有效地防止蓄电池过充电或过放电。
太阳能电池充放电控制器电路图:
一、电路结构电路如附图所示。双电压比较器LM393两个反相输进端②脚和⑥脚连接在一起,并由稳压管ZD1提供6.2V的基准电压做比较电压,两个输出端①脚和⑦脚分别接反馈电阻,将部分输出信号反馈到同相输进端③脚和⑤脚,这样就把双电压比较器变成了双迟滞电压比较器,可使电路在比较电压的临界点四周不会产生振荡。R1、RP1、C1、A1、Q1、Q2和J1组成过充电压检测比较控制电路;R3、RP2、C2、A2、Q3、Q4和J2组成过放电压检测比较控制电路。电位器RP1和RP2起调节设定过充、过放电压的作用。可调三端稳压器LM371提供给LM393稳定的8V工作电压。被充电电池为12V65Ah全密封免维护铅酸蓄电池;太阳电池用一块40W硅太阳电池组件,在标准光照下输出17V、2.3A左右的直流工作电压和电流;D1是防反充二极管,防止硅太阳电池在太阳光较弱时成为耗电器。
二、工作原理当太阳光照射的时候,硅太阳电池组件产生的直流电流经过J1-1常闭触点和R1,使LED1发光,等待对蓄电池进行充电;K闭合,三端稳压器输出8V电压,电路开始工作,过充电压检测比较控制电路和过放电压检测比较控制电路同时对蓄电池端电压进行检测比较。当蓄电池端电压小于预先设定的过充电压值时,A1的⑥脚电位高于⑤脚电位,⑦脚输出低电位使Q1截止,Q2导通,LED2发光指示充电,J1动作,其接点J1-1转换位置,硅太阳电池组件通过D1对蓄电池充电。蓄电池逐渐被布满,当其端电压大于预先设定的过充电压值时,A1的⑥脚电位低于⑤脚电位,⑦脚输出高电位使Q1导通,Q2截止,LED2熄灭,J1开释,J1-1断开充电回路,LED1发光,指示停止充电。
当蓄电池端电压大于预先设定的过放电压值时,A2的③脚电位高于②脚电位,①脚输出高电位使Q3导通,Q4截止,LED3熄灭,J2开释。其常闭触点J2-1闭合,LED4发光,指示负载工作正常;蓄电池对负载放电时端电压会逐渐降低,当端电压降低到小于预先设定的过放电压值时,A2的③脚电位低于②脚电位,①脚输出低电位使Q3截止,Q4导通,LED3发光指示过放电,J2动作,其接点J2-1断开,正常指示灯LED4熄灭。另一常闭接点J2-2(图中未绘出)也断开,切断负载回路,避免蓄电池继续放电。闭合K,蓄电池又充电。
一个性能优良的电源,是所有电子设备的能源保障。现在电子技术发展迅猛,对电源的要求更趋苛刻,特别是一些大电流、宽电压输入范围之电源更是如此。原来的串联稳压电源由于其体积大、效率低、发热严重等缺点已被逐步淘汰出局,设计者转而关注并采用轻巧、效率高的开关电源电路,并逐步延伸到各个领域应用。
其中的一款LM2576芯片性能比较优良,能在很宽的电源范围下工作;普通型的上限达到40V,而LM2576HV能达到60V,输出电流均在3A左右(散热条件良好情况下)。而且,该芯片外围元件少,调试容易,所以为很多人所采用,特别是在DC-DC变换器上应用广泛。
但是,由于DC-DC变换器输入电源多数为化学电源,即各类电池,而电池具有内阻,空载和满载端电压变化很大,所以制造大功率电池时,为减少电池极板面积,厂家的策略往往是增加串联个体数目,以致电池标称电压有逐渐增高趋向。以自行车用48V铅酸动力电池为例,空载时为58V,满载为48V。而48V燃料电池空载更达72V,满载达48V。
显而易见,48V铅酸电池空载电压已超过LM2576上限,已接近LM2576HV输入上限,而48V的燃料电池空载已超过LM2576HV上限。而且,很多应用要求DC-DC输出5-15A的电流,这就迫使LM2576输出扩流。然而这并非用大功率管组成射极跟随就可扩展为需要值。读者也不必去尝试,其结果为大功率管无法承受功耗发热严重而损坏!
欲使系统满足高电压输入、大电流输出要求,当然简单是改换电路结构,采用高频变压器输出的开关电源。但是某些芯片转换效率欠佳,系统体积也无法和LM2576相比;而且由于制作方面复杂性,造价也倍于后者,所以很多输入、输出电源无需电气隔离的电源。设计者总不太喜欢采用,而希望保留简洁的LM2576平台,加以外围辅助电路,从而实现其性能提升,制作出具较高性价比的应用产品。
笔者接受一个在48V燃料电池控制龟源的任务:其参数为输入电压空载72V到过流时39V,输出为30V稳压、输出7A。而且有体积上的限制,不允许安装大的散热片。其中如此高的电源电压一项,就使很多元器件失去用户之地!为此,需要对输入电压、输出电流的扩展电路作一个全新的两全齐美的设计,才能脱出困境!
反复推敲得出具体设计方案:芯片电源用简易串稳电源24V供电,用VMOS管作为开关管替代芯片片内开关管;芯片仅作为VMOS管驱动器应用。
实现此方案的关键问题,就是要求电路既要有效传送驱动信号,又要同时保证外接VMOS管与芯片输出端电位隔离良好,避免芯片与管子同归于尽的后果发生!
经过多次试验,简易电路具体结构介绍如下图所示。其中,R1、Q1、D1、Q2组成24V简易稳压电路。C3为滤波电容。该电源为LM2576提供稳定23V电源。当电源输入低于25V时不能稳压,但仍能在20V以上电压工作。如欲工作于低电源电压,可降低D1稳压值,实验可低到10V应用,而不影响电路工作,但Rl须调整阻值,使稳压管正常工作。由于该电源仅提供小电流输出的LM2576芯片,所以Q2不需装散热片。
在电源上限不超过芯片输入电压上限值时(LM2576HV-60V,LM2576-40V)可省略稳压电路,电池直接LM2576电源端。
LM2576输出由R2、R3分压驱动Q7导通与截止。Q7导通时,电流从VCC流出经D3、D2、R4、Q7到地。D3产生15V电压供给Q3~Q5栅压,而Q6因D2导通而反偏充分截止。截止时的高阻不构成Q3~Q5栅压的旁路。从而使Q3~Q5充分导通,C2充电。Q7截止时,VCC→D3→D2→R4电流回路被切断,D3无压降使Q3~Q5栅压消失,而D2截止,不构成对Q6反偏箝位。Q6因R6供电导通,致使Q3~Q5栅极同源极短接,从而迫使Q3~Q5迅速关断,C2仍由D4产生下正上负的感生电压通过L1充电。
此状态直至Q7重新导通结束。
Q7由LM2576输出端口经R2、R3分压驱动,高电平时导通,低电平截止。由于VMOS管驱动电流很小,因此5551驱动3~4个VMOS是没有问题的。必要时更换TIP41驱动能力更大,能驱动更多的VMOS管。
LM2576-ADJ(ADJ为输出电压可调型)的电压调整机理,由R7、R5阻值调整构成调节系统。
其公式VOUT(V)=1.23*(R7/R5+1),附加的电子开关不影响其数值。电路中R7为42K,R5为1.8K;实测输出电为30.3V。同计算值非常接近。
电路调试结果:品质极其良好,基本上合乎设计要求;输出电压稳定,发热很小;在不加散热片情况下,3个IRF9540并联输出4A时工作3小时管子不烫手;而LM2576和20100肖特基二极管根本无温升。装上散热片后,可输出7.0A电流。转换效率同Im2576单独应用相仿。其性能竟满足了要求极其苛刻的军方要求:输入电压22~80V;输出电流1~7A;全天候工作温升<27℃的来说,系统提升应用效果相当成功。
此外,本电路还可派生出很多应用电路,如可以用作有刷直流电机控制器;R7改成电位器可平稳的调节转速;R5并接适当阻值负温热敏电阻后,使成为一个DC无刷风机控制器;可根据器件温升自动调节风机转速…,作为一个高效、宽范围电源输入、大功率输出平台;肯定有很多等待读者开发用途!
注:LM2576---TO-220封装
IRF9540、TIP41、20100均为TO-220封装
D1、D2、D3均为贴片1005封装
Ql、Q6、Q7为贴片SOT-23封装
R1-R7为贴片0805封装
L1中12X16工字磁芯用1.35漆色铜线绕制,电感量47μH-100μH
C1、C3为RB.3/.6封装
C2为RB.2/.4封装
C5为贴片1005封装